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The question of longitudinal decoherence of the collective motion of a bunch
of charged particles in presence of nonlinearities due to a sinusoidal bucket and
space charge is addressed in this note.
The method we propose starts from the calculation of decoherence due to non-
linearity alone. Semi-analytical expressions for the evolution of the bunch lon-
gitudinal centroid and rms-size (first two moments of the detailed longitudinal
particle distribution, on which we assume the space charge forces only depend)
are found using a convenient parametrization of the synchrotron detuning with
amplitude caused by a sinusoidal bucket. These expressions can then be used
as starting point of a recursive numerical procedure, which recalculates the sin-
gle particle equation of motion with space charge and thus converges to the
final profile of longitudinal centroid and rms-size evolution with space charge
included after a few iterations.
Macroparticle simulations using the HEADTAIL code are lastly included to
benchmark and validate the results obtained with and without space charge.

When a bunch gets longitudinally offset from the bucket center, it begins
making synchrotron oscillations around it. The oscillation can be observed with
beam position monitors. If all particles have the same synchrotron tune, the
centroid motion is expected to be harmonic. However, if the beam contains
a spread of tunes, the motion will decohere since the individual synchrotron
phases of the particles disperse. As the longitudinal phase space of the beam
spreads to an annulus, the observed centroid of the beam will show a decaying
oscillation and its rms-size will grow. Strong space charge below transition can
inhibit the centroid decoherence and thus keep the oscillations undamped by
local compensation of the synchrotron detuning with amplitude. This is what
we are going to show in the following.
Different synchrotron tunes are induced by the non-ideal bucket shape, which
provides a sinusoidal restoring force. The single particle equation of motion
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including space charge can be written as:

dz

dt
= ż = −ηcδ

dδ

dt
= sgn(η)

eVm

p02πR0
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(

ωrfz

c

)
+ Fsc(z− < z >, σz)

(1)

where δ = δp/p0, η is the slippage factor defined as (γ−2
t − γ−2), 2πR0 is

the machine circumference, Vm is the holding voltage oscillating at the radio-
frequency ωrf = hω0, and Fsc stands for the space charge force normalized to
the nominal momentum p0, which in first approximation depends solely on the
particle offset from the bunch centroid z− < z > and on the bunch rms-size
σz. These equations must then be completed with the proper initial conditions:
(z, δ)|t=0 = (ẑ, δ̂). Knowing the initial particle distribution in the longitudinal
phase space, e.g. let’s assume a double Gaussian distribution of a bunch kicked
by z0
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we can also express the centroid and rms-size evolutions through the integrals:

< z > (t) =
∫
�2

z(ẑ, δ̂, < z >, σz)ρ(ẑ, δ̂)dẑdδ̂

σz(t) =
∫
�2

z2(ẑ, δ̂, < z >, σz)ρ(ẑ, δ̂)dẑdδ̂− < z >2 (t)

(3)

For simplicity we also assume that the bunch was matched to the bucket prior
to offsetting, so that the following equality is satisfied:

σδ0 =
ωs0σz0

ω0R0|η| . (4)

In this equation, ωs0 = Qs0ω0 represents the linear synchrotron frequency (os-
cillation frequency at the small amplitudes), which is given by

ωs0 =

√
|η|eVmhω0

2πR0p0
,

as can be easily deduced from Eqs. 1.
A first look at the equations (1) and (3) shows that, if space charge is taken
into account, the problem consists of a very complicated integro-differential set
of equations having < z > (t) and σz(t) as unknowns with initial conditions
< z > (t = 0) = z0 and σz(t = 0) = σz0. We try to solve it by iterations
following the procedure that we describe here below. As first step, we neglect
the term F̂sc(z− < z >, σz) in the second of Eqs. 1. This may allow us to write
the solutions of the equations of motion in the closed form:

z(t) = −ηcδ̂
ωs

sin[(ωs0 − ∆ωs(ẑ, δ̂))t] + ẑ cos[(ωs0 − ∆ωs(ẑ, δ̂))t]

δ(t) = δ̂ cos[(ωs0 − ∆ωs(ẑ, δ̂))t] +
ẑ

ηc
sin[(ωs0 − ∆ωs(ẑ, δ̂))t]

(5)
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provided that we can find a parametrization of the synchrotron detuning with
amplitude in the form

∆ωs = ω0∆Qs(ẑ, δ̂) = ω0∆Qs(Ê) , (6)

where

Ê = E =
eVmc

2πR0ωrf

[
1 − cos

(
ωrf ẑ

c

)]
+

1
2
p0|η|cδ̂2

represents the particle energy, which is an invariant in the particle motion.
In analytical form, this parametrization can be derived from the use of both
Eqs. 1 applying a separation of variables and taking into account that the single
particle trajectory in longitudinal phase space is uniquely determined by the
energy conservation:

∆ωs(Ê) =
|η|ceVm

2R0p0

∫ √
2|η|cÊ/p0

0

dż

sin[ωrfz(ż, Ê)/c]
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c

ωrf
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ωrfπR0p0ż
2

eVm|η|c2
− ωrf2πR0Ê
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]
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Figure 1: Synchrotron tune Qs as function of the particle energy (in eV), i.e.
of the particle initial amplitudes in longitudinal phase space.

Fig. 1 shows the function ∆ωs(Ê) as evaluated numerically from longitudi-
nal tracking of particles having different energies over slightly more than one
synchrotron period. We have used the SIS parameters summarized in Table I.
The shape of the curve shows that the function stays rather linear over a wide
energy range and then steeply drops to zero for energy values that are very close
to the bucket boundary. Therefore, we can safely approximate the dependence
of the synchrotron tune on the energy with a line having a negative slope k over
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a large range of energies. If we figure out from the parameters in Table I what
the maximum particle energy approximately is in a bunch initially displaced by
an amount z0,

Emax =
Vm

2πh

[
1 − cos

(
h(z0 + 2σz0)

R0

)]
,

we find out that the linear approximation,

∆ωs = kÊ ,

can be applied for kick amplitudes up to about 8 × σz0. When we use the
above equation, we must bear in mind that it only holds if the initial centroid
offset inside the sinusoidal bucket does not push the bunch too close to the
boundaries of the bucket. However, due to the steep shoulder of the curve
plotted in Fig. 1, we can usually be sure that this approximation stays valid even
for initial displacements up to many σ’s, values far above the kick amplitudes
which would be normally imparted in an experiment.

Table 1: SIS parameters used in this study.
variable symbol value
Circumference C 216 m
Relativistic gamma γ 3.129
Chamber size a, b 10 × σx,y

Bunch population Nb 1011 p
Rms bunch length σz0 2 m
Rms energy spread σδ0 5.9 × 10−4

Slip factor η −0.0665
Synchrotron tune Qs0 6.8 × 10−4

Betatron tune Qx,y 4.3,3.29
Average beta function β 8,10.45 m
Rms transv. beam size σx,y 4 mm
Initial kick amplitude z0 4 m
Maximum voltage Vm 32 kV
Harmonic number h 4

Using now Eqs. 3 with the above parametrization leads us to the following
expressions for the bunch centroid and rms-size evolutions in absence of space
charge:

< z > (t) = − 1
2πσz0σδ0
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(7)
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Figure 2: Decoherence of the centroid motion for a longitudinally displaced
bunch due to the sinusoidal bucket nonlinearity in absence of space charge
effects (< z > in m versus t in s).

Figures 2 and 3 show longitudinal centroid and rms-size evolutions as re-
sulting from the expressions (7) and (8) for parameters in Table I. Due to the
sinusoidal bucket the centroid oscillation, which would have survived forever un-
damped in the case of purely linear restoring force, significantly decoheres after
a few synchrotron periods. At the same time the bunch longitudinal rms-size
grows and tends to level off at the asymptotic value

σz(t → ∞) =

√
σ2

z0 +
z2
0

2
,
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as results from Eq. (8) when taking its limit as t → ∞.
Our iterative procedure to evaluate the effect of space charge simply consists
in using these evolutions back in Eqs. (1), find new solutions for a set of initial
conditions and thus recalculate the integrals (3). After only two iterations the
method converges to the evolutions depicted in Figs. 4 and 5. The damping of
the centroid oscillation is no longer to be observed, whereas the bunch longi-
tudinal rms-size still increases even if its growth seems to stop at a lower level
than without space charge.
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Figure 3: Bunch rms-size evolution for a longitudinally displaced bunch due to
the sinusoidal bucket nonlinearity in absence of space charge effects (σz in m
versus t in s).

To cross-check the validity of the obtained analytical expressions as well as
of the iterative procedure which we have used above, we have also carried out
macroparticle simulations using the HEADTAIL code with the same parameters
of Table I. The results in terms of bunch centroid and rms-size evolution are
plotted in Figs. 6 and 7. The agreement with the semi-analytical theory that
we have developed is excellent and confirms the capability of space charge to
stop the centroid decoherence if nonlinearities are present.

The effect of space charge on longitudinal quadrupole oscillations can also
be studied with our method. To excite a pure quadrupole oscillation, we only
need to remove the condition (4) and set the initial longitudinal offset of the
bunch, z0, to 0.
In this case, no centroid oscillation will be observed. The σz will still evolve
according to Eq. (8), where this time it will be < z > (t) = 0 and, because
of the unmatched situation, σ2

z0 on the first line must be replaced by σ2
z0/2 +

η2c2σ2
δ0/(2ω

2
s0). The evolution of the bunch rms-size is depicted in Fig. 8.
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Figure 4: Decoherence of the centroid motion for a longitudinally displaced
bunch due to the sinusoidal bucket nonlinearity with (red) and without (blue)
space charge effects.

We have chosen to simulate an SIS bunch with a momentum spread which
is scaled by a factor 0.8 with respect to the value reported in the Table I
(matched value). A smaller momentum spread than the the matched value
would cause the bunch to shrink initially and then oscillate around the new
σ

(match)
z = σδ0|η|c/ωs = 0.8σz0 if no longitudinal detuning were included in the

analysis. It is clear that, owing to the bucket nonlinearity, decoherence appears
in the quadrupole oscillation, too. The asymptotic value of the bunch rms-
size, which is eventually reached after the oscillation at twice the synchrotron
frequency has fully died out, will be:

σz(t → ∞) =

√
σ2

z0

2
+

η2c2σ2
δ0

2ω2
s0

Just like in the case of the pure dipole oscillation, space charge causes the
quadrupole oscillation to be undamped. Figure 9 shows the persistent oscilla-
tion as evaluated with the iteration method.

Figure 10 shows the result of a macroparticle simulation done with the
HEADTAIL code.
The fact that the oscillation amplitude reduces when space charge is included
can be easily explained by observing that space charge is defocusing below
transition, and therefore can lower the net focusing, the strength of which is re-
sponsible for the bunch shortening and subsequent oscillation in the unmatched
case.
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Figure 5: Bunch rms-size evolution for a longitudinally displaced bunch due to
the sinusoidal bucket nonlinearity with (red) and without (blue) space charge
effects.
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Figure 6: Decoherence of the centroid motion for a longitudinally displaced
bunch due to the sinusoidal bucket nonlinearity with (red) and without (blue)
space charge effects. This result has been obtained via macroparticle simulation
with the HEADTAIL code.
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Figure 7: Bunch rms-size evolution for a longitudinally displaced bunch due to
the sinusoidal bucket nonlinearity with (red) and without (blue) space charge
effects. This result has been obtained via macroparticle simulation with the
HEADTAIL code.
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Figure 8: Bunch rms-size evolution for a longitudinally unmatched bunch due
to the sinusoidal bucket nonlinearity.
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Figure 9: Bunch rms-size evolution for a longitudinally unmatched bunch due
to the sinusoidal bucket nonlinearity with (red) and without (blue) space charge
effects.
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Figure 10: Bunch rms-size evolution for a longitudinally unmatched bunch
due to the sinusoidal bucket nonlinearity with (red) and without (blue) space
charge effects. This result has been obtained via macroparticle simulation with
the HEADTAIL code.
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